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Fragility in p-spin models
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We investigate the relation between fragility and phase space properties — such as the distribution of states
— in the mean-fieldp-spin model, a solvable model that has been frequently used in studies of the glass
transition. By direct computation of all the relevant quantities, we find(ih#te recently observed correlation
between fragility and vibrational properties at low temperature is present in this modgi)ahe total number
of states is a decreasing function of fragility, at variance with what is currently believed. We explain these
findings by taking into account the contribution to fragility coming from the transition paths between different
states. Finally, we propose a geometric picture of the phase space that explains the correlation between
properties of the transition paths, distribution of states, and their vibrational properties. However, our analysis
may not apply to strong systems where inflection points in the configurational entropy as a function of the
temperature are found.
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I. INTRODUCTION the basin of attractions of such minima. With this respect, a
) . ] key point is the existence of a relation between viscogity
The glass-forming materials are characterized by a huggs|axation timeg and the configurational entropy(T) (i.e.,
variation of their transportviscosity, mobility, diffusivity  he number of basins populated at a given temperature
and dynamicalrelaxation timepproperties, upon supercool- pamely. the Adam-Gibbs relation
ing. As an example, the viscosity in the whole "liquid” range,

if crystallization is avoided, increases of about 17 orders of £
magnitude by decreasing the temperature before the system 7(T) = 7. eXp<T2 (T))' 1)
falls in the glassy state. The transition to the latter is conven-
tionally fixed at the temperatur&, where the viscosity Here 7(T) is the viscosity andy., its high-temperature limit.
reaches a value of 1dP. Different systems show different This relation has been extensively tested against experimen-
temperature behavior of the viscosity, and they have beegy results, and it is now commonly accepted as “correct”.
classified accordingly. Fragility is an index measuring thepegpite its success in describing both numerical and experi-
steepness of the viscosity as a function of the temperature qjental data, the Adam-Gibbs relation still has not been de-
approaching the glassy state: “fragile” systeimigh value of  rjyed in a clear way from microscopic models. This leaves
the fragility indey are characterized by a super-Arrhenius ynsolved the question of the microscopic interpretation of
behavior of the viscosity, which increases very fast and—ifthe parametef, which is usually believed to be related to the
extrapolated beloW—seems to diverge at a finite tempera- properties of the transition paths between different minima of
ture Ty. In “strong” systemglow value of the fragility in-  the potential energy, such as the height of the barriers or the
dex), on the contrary, t_he viscosity increase_ is Ie_ss dramaﬂ‘éonnectivity of the minima. By using the Adam-Gibbs rela-
and follows an Arrhenius law, apparently diverging only attjon, one could expect to relate fragility to the properties of
zero temperature. _ _ _ _ 3(T) —i.e., to the distribution of basins in the phase space of
~ The identification of the microscopic details that, in ahe system. However, this possibility is frustrated by the lack
given glass former, determine the temperature dependence gf knowledge of the parametét Indeed, once a model for
the viscosity, and thus the value of the fragility, is a long-s (T) has been chosen, one can obtain the whole range of
standing issue in the physics of supercooled liquids and thg, e rimentally observed fragilities by varyisgsee Ref[1]
glassy state. Large numerical and theoretical efforts havg.j references thergirMore specifically, in Ref[1] it was
been devoted to the attempt to relate the fragility to specifigserved that for a large class of models ¥dT) — where
interparticle interactionge.g., strong glasses are often char—E(T) is a concave function of that vanishes at a given
acterized by highly directional covalent bonds, while thetemperatureTK and assumes its maximulii at high tem-

fecenty, he attenton has been foctised on the possible relBETaLUIe Caussian-iie models”— the relevant parameter
Y, P at actually determines the fragility is

tion existing between the fragility and features of the poten-
tial energy landscapéPEL), more specifically the energy £
distribution of the minima of the PEL and the properties of D=—FC. (2

Thus, fragility appears to be determined by the ratio between
*Electronic address: francesco.zamponi@phys.uniromal.it & (measured in units dfgTy) and the total number of states
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3" /kg; it is related to both the distribution of minima [l. DEFINITION OF THE RELEVANT OBSERVABLES
(throughX") and the characteristic of the transition path be-
tween them(through¢&). The relation between fragility and
phase space properties can be even more complicated in
those cases where the functidiiT) does not belong to the T, thermodynamical transition temperature;

Gaussian class. B _ Tq glass transition temperature;

The relevance of the concept of fragility also relies on th dynamical transition temperature;
correlations that have been found between this index an dT lexi T '
other properties of glass-forming liquids. Examples of thes (Ty) complexity atTg;

The quantities we wish to compute are

correlations are the specific heat jumpTgtthermodynamic ~ M(Tg) fragility;
fragility) [2], the degree of stretching in the nonexponentiala(T,) “volume” of the equilibrium states af;
decay of the correlation functions in the liquid closeTg E(Ty) “barrier height” atT;

[3], the visibility of the boson peak at the glass transition
temperaturef4], or the temperature behavior of the shearSettingkg=1, all the above quantities are either dimension-
elastic modulus in the supercooled liquid stgig More re-  less or have the dimension of an energy; in thapin
cently a striking correlation between fragility and the vibra- model—as usual in classical spin models—a natural energy
tional properties of the glass at low temperatures has beestale J appears as the strenght of the couplings between
found [6]. Specifically, by examining the dynamic structure spins. Thus, if we additionally sét=1, all the quantities we
factors of different glass formers well beloly, it has been  will deal with in this paper become dimensionless; in the
found that the fragility of the corresponding liquid is propor- following, with this specification, we will always deal with
tional to the rate of change of the nonergodicity factor in thedimensionless quantities.
T—0 limit. The latter quantity being fully determined by the ~ We have now to identify the proper definition of these
(harmonig vibrational propertiegeigenmodes of the disor- quantities in a mean-field model. The main problem is that in
dered structurg this finding implies the existence of a deep a mean-field model the glass transition temperalyres not
relation between three features of the PEL: the energy of the well-defined quantity. Indeed, the relaxation time of the
minima, the transition paths between thémat together de- System is known to diverge — as a power law — when the
termine the fragility, and the Hessian matrix, evaluated attemperature approaches the dynamical transition temperature
the minima themselves, which fixes the vibrational proper-Ta: Which corresponds to the usual mode-coupling tempera-
ties. ture Ty ct. The crossover from a power-law behavior of the
With the aim to elucidate the existence of this unexpected€laxation time to an Arrhenius-like behavior, observed
correlation between energy, curvature, and transition paths iAroundTycr in finite-dimensional systems, is due to the ac-
the minima of the PEL we selected a solvable model ofiivated processes becoming relevant; these processes are ab-
“glass,” where(i) the distribution of minima is “Gaussian Sent in mean-field systems, and the crossovef,gir be-
like,” (ii) the vibrational properties of the minima can be comes a true dynamical transition®{[7]. To overcome this
determined, andiii) the transition path between different Problem, we will give an estimate of the heigfT) of the
minima can be evaluated and characterized by an enerdgarrier that the system must pass through in order to escape
parameter. More specifically, we investigate the mean-fieldrom a metastable state at a given temperafuréhus, we
p-spin modelin both its spherical and Ising spin versigns  Will make use of a “fictitious” Adam-Gibbs relation

model that shares with the structural glasses many aspects of &(T)

the glass transition phenomenology and that is known to 7(T) = 7 exp( ) (3)
have a Gaussian-like distribution of states. Our goal is two- T (T)

fold: (i) we aim to verify if the analysis reported ii] is . - ;

indeed correct in some microscopic model — i.e., if one canand defin€Tq by 7(Tg)/7..=const or, equivalently, by
obtain a wide range of fragilities in a Gaussian-like model by E(Ty)

varying the parametesr—andi(ii) to check whether one can TS (T, const. (4)

explain the correlation between fragility of the liquid and the
vibrational properties of its glass found[ié] by studying the  Note that in this paper we will not distinguish between the
geometry of the phase space. The latter point could allow u&omplexity” (or “configurational entropy’>(T), which can
to shed light on the origin of the correlation between numbeibe calculated in mean-field models, and the “excess entropy”
of minima, their vibrational properties, and the property of measured in the experiments: indeed, they behave in a simi-
the transition path between them. lar way in a wide class of systenfi8]. Obviously, the quan-
The paper is organized as follows: in Sec. Il we define thaity #(T) has no dynamical meaning in a mean-field context,
relevant quantities in the case of the mean-figkdpin  but it provides a useful definition 6f, that hopefully coin-
model; in Sec. Ill we compute them for the spheripapin  cides with the usual one in finite dimensions. It will turn out
model and in Sec. IV for the Ising-spin model; in Sec. V  that our analysis is not strictly dependent on this definition of
we discuss the relation between fragility and phase space,, the behavior of the various quantities &t being repre-
geometry in these models and compare our result with exsentative, as we will see, of a general trend observed at all
perimental data. Finally, we draw the conclusions. temperature§ & [Tk, T4l by varyingp.
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The free energy of the system fog <T < T, can be writ-

0.02 ‘ ‘ - . ——
il
— T=T, ‘,',‘ ten as
ooisk |-- T=T, : i F(M=f(T) -T2 (T), (6)
= T=T, Li | wheref(T) is the free energy of a single equilibrium state at
V@ [/.' temperatureT and 2(T) is the complexity—i.e., the loga-
0.011 ! ,-' = rithm of the number of equilibrium states. The free energy of
L two independent copies of the system kg(T)=2F(T)
/I 1 | =2f(T)-2T2(T), while the free energy of two copies con-
0.005 |- I IENR / ,~' . strained to be in the same equilibrium state is given by
e S el
- N - Fq, (1) =2f(T) - T3 (T). (7)
. /
! 1 . No s 1 .
% 0.2 04 06 0.8 1 Thus,
V(Gin T) = Fq (T) = Fo(T) =TS (T), (8)
FIG. 1. The two-replica potential foF € [Ty, Tq4] in the spheri- o .
cal p-spin model. and the gqU|I|brlum complexity(T) can be deduced from
the functionV(q,T).
A. Two-replica potential The difference betweer] Fhe value Vfat_ the maximum
and the value o¥ at the minimum can be interpreted as the

The easiest way to provide a definition of all the aboveheight of a “barrier” that the two coupled systems have to
quantities is to consider the two-replica potential approackyvercome to escape from the situation where they are con-
introduced and discussed[i8,10]. This functionV(q,T) can  strained to be in the same state. Thus, we can define the
be interpreted as the free-energy cost paid to keep two copiebarrier height” £(T)=V(Jmax T) —V(Qmin, T)- Note that a

of the system at a fixed overlap system-dependent proportionality factor is needed in order to
_ _ account for the cooperativity of the process of escaping from
V(q,T) =Fq(T) = Fo(T); ®) a state: indeedy(q) is the free energy per spin, while an

here E-(T) is the free enerav of two copies of the s Stemunknown number of spins can be involvgd in the. escaping
o(T) | gy P y process. Therefore, th&T) defined above is an estimate of

when constrained to have fixed overlap and Fy(T) ; .
=2F(T) is the free energy of two independent copies of thethe barrlgr height up to an unknowsystem-dependeypro-
system portionality factor.

Its qualitative behavior is shown in Fig. 1 for the one step
replica symmetry breakinglRSB mean-fieldp-spin spheri- B. Temperatures
cal model: forT>Tjy it is a convex function ofj with only The thermodynamical transition temperatiifeis defined
one minimum aig=0. At the dynamical transition tempera- as the temperature where the complexity vanisi¥&Jy)
ture Ty a secondary minimum starts to develop at fiojt©n =0, Then, atTy the value ofV at the secondary minimum

lowering the temperature below,, the value ofV at the  becomes equal to zetsee Fig. 1. The dynamical transition
minimum decreases and vanishes at the thermodynamicgdmperatureT, is the temperature at which the metastable
transition temperaturéy. minimum first appears. We now provide a definition of the
From the potentiaM(q,T) one can extract information “glass transition temperatureT,. As we discussed at the
about the complexity(T) and the barrier heigh€(T). In-  beginning of this section, using the Adam-Gibbs relation, the
deed, it is well known that fof <T < T, the phase space of usual definition of glass transition temperature turns out to be

1RSB models is disconnected in an exponentially high num-
ber of metastable states. The Gibbs equilibrium state is a &y =C (9)
superposition of a subset of these statésquilibrium Tg2 (T '

states} having a defined self-overlag(T); however, the . . L
probability of finding — at equilibrium — two independent The value of the constaatis arbitrary. Taking into account
copies of the system in the same state is Z&d. Different the fac; that_ in the con5|dere<_j modelss defined up to a .
states have zero overlap; we therefore expect that the Stat;?éopornonahty factor, we can fix the value of th_e constant in
phase of the two copies of the system — i.e., the one foprder to obta!n reasonab(wqh respect to experlmer)tsgll- .
which V(q) is minimum — is ag=0. This is indeé'd the case Ue€S for the different quantities we want to study, fragility in
as one can see from Fig, 1 The. secondary minimurg at particular. Different choices of the constant change only
40 can then be interpretéd és 2 metastable state for the t uantitatively the results, while the qualitative picture stays
coupled systems, which corresponds to the situation where © Same-
both systems are in the same state with self-oveqgap. ] ) ) -

C. Complexity, barrier heights, and fragility

Thus, the value,,;(T) whereV(q,T) has a secondary mini-
mum can be interpreted as the self-overlap of the equilibrium  Given a definition ofT,, the complexity afT is simply
states at temperatuie 2(Ty) and the barrier heighf(T,): clearly, these two quan-
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09 [ a(Ty) = m[1 = f(Ty)]. (12)
0.8
- As one can easily check observing Fig. 2 of R, this
0.7 definition is equivalent to Eq11) if the curvesf,(T) do not
i intersect.
0.6 The quantityf,(T) (in the lowk limit) can be identified in
T the considered models with the self-overlap of the states: this
03 identification comes from the observation that both quantities
04 I represent thelateauof a relevant correlation function. Thus,
7l we will define
0.3
I a(Ty) =1-q(Ty), (13
0‘%)‘1 - Il — 'llo - '1'00 Whereq(Tg) is the self-overlap of the equilibrium statesTgt
p-2 — i.e., the value ofy whereV(q, T) has the secondary mini-
) - _ mum atT=T, (see Fig. 1L
FIG. 2. Thermodynamic transition temperatilig glass transi- As the self-overlap of the states is related to their volume

tion temperaturdy and dynamical transition temperatufgfor the

: ; ; in phase spacghigh overlap corresponding to small stgtes
p-spin spherical model as a function pf 2.

small value ofa corresponds to small-volume states, while a
big value of @ corresponds to large-volume states. In this
tities are related by Eq(9). Knowing the complexity as a senseqn(T,) will be called “volume of the equilibrium states
function of the temperature, we can define the fragility as at T,.” Note that a similar identification has been discussed
in Ref.[6]: indeed, from Eq(7) of Ref. [6] (note that due to

(T, a typographical error the power —1 has to be disregaroiee
m(Tg) =1+Ty ST (100 can see that is related to the curvatures of the minima of
9

the potentialin the harmonic approximatigrand that small

he | definition i fuli field curvatureglarge volumé correspond to larger, while high
The latter de inition is very useful in a mean-field context ascurvatures(small volumeé correspond to smalk. This is
— once a definition ofTy has been chosen — it involves

: O . - =2 consistent with the equivalence of the definitionafjiven
only the complexity, which is a well-defined quantity in in Ref. [6] and the one adopted here
mean-field models. It is equivalent to the usual Angell defi- ' '

nition of fragility if #,=const, and the Adam-Gibbs relation

is assumed to be valifil]. This definition of fragility has E. Summary of the definitions
been shown to be related to the one usually considered in To conclude this section, we give a short summary of all
experiments in Ref{2]. the definitions we discussed. We will cal},;(T) the value of
g whereV(q, T) has the secondary minimum aggl,(T) the
D. Volume of the states value ofq whereV(q,T) has a maximum. Then, we define
As we discussed in the Introduction, in RE8] fragility 2(T) =V(@min(T), DIT,

has been shown to be correlated with an index related to the
volume of the states populated at equilibrium arou _ _ _
More precisely, in6] this index has been defined as T €M =V (a1 T) = ViGmin(T). T,

. d[fk(T)]_l T« :2(Tx)=0,

a(Ty) =lim ———— , (11)
k—0 d(T/Tg) T=0
_ S(Tg) B

where f(T) is the nonergodicity factor extracted from the ¢ Ty (Ty) '
dynamic structure factoB(k,w) at a given wave vectok.
From Fig. 2 of Ref[6], we see that the possibility of classi- Ta  OGmaxTa) = Amin(Ta),
fying the considered systems in term @f— given by Eq.
(11) — relies on the observation that the curvesfpfas a ST
function of T/T for different systems do not intersejthe m(Ty =1 +Tg—9—,
same observation, which holds forz}T) as a function of 2(Ty)
T,/ T, is the basis of the definition of fragilityTherefore, the
index « defined in[6] can be replaced by other equivalent — a(Ty) =1 = Oin(Ty).

by equivalent we mean positively correlated — definitions
(like the definition ofF,, as a “fragility index”[2]). An  The constant will be chosen in order for the fragility to be
useful equivalent definition of is in the experimentally observed range.
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Ill. SPHERICAL p-SPIN MODEL

In this section, we will compute explicitly all the previ-
ously defined quantities in the spherigakpin model. The

model is defined by the Hamiltonian

Hp == 2 Jil"'
(i ip)

o
1

. [0
‘Ip Ip’

=
where g, are real variables subject to a spherical constraintd 9381

(14)

Eia‘iz=N, and Jil,---,ip are quenched random Gaussian vari-
ables with zero mean and variangg/ (2NP™1). This simple

model has been successfully used for studies of the glas

transition[7,12. It is a “Gaussian-like” model, in the sense
that its complexity — even if the distribution of states in not
exactly Gaussian — is known to be a concave function of the
temperature, which vanishesTgt and assumes its maximum

at Ty, without any inflection point in betweefi3].

The expression fo¥(q, T) in the p-spin spherical model
has been computed in Ref®,14]. However, a simplified
expression can be used when the valueVed,T) on its

stationary pointss consideredsee the Appendix

B

T Tq
-EgP-=In(l-q) - —.
2975 n(1-aq >

V(q,T) =

This function can be shown to coincide with the correct

(15)

V(q,T) on each stationary point af(q, T). As we are inter-
ested only in the value &f(qg, T) on its stationary points, the
use of the correct/(q, T) calculated in Refg[9,14] or of the
one given by Eq(15) will give exactly the same result.
Note that, while the model is defined only for integer
Eq. (15) holds also for reap; we will therefore discuss the The fragility indexm is shown in Fig. 4 as a function qf.
behavior of the different quantities for any repE2. In
particular, thep— 2 limit is interesting being related to a
diverging fragility (T4— Tx) and to the discontinuous 1RSB

transition becoming a continuous one.

A. Temperatures

From Eq.(15) we can compute the three temperaturgs
Ty and Ty as functions ofp. Their behavior is reported in
Fig. 2. We immediately note that, fgg~ 2, the difference

betweenT andTy is very small therefore, the system is very '

fragile. Moreover, forp— o the Kauzmann temperature ap-
proaches zergas 1AIn p), while the glass transition tem-

perature remains finite. The system therefore becomes stror

ger and stronger on increasipg

B. Complexity and fragility

The same observation can be made more quantitative bjlo _

considering an “Angell plot” for the complexity?]: in Fig. 3

we show the complexit.(T) as a function of temperature
for different values op. The choice of the particular scaling
that appears in Fig. 3 has been made in order to make a clos
correspondence with Fig. 2 of Ref2]. We see that the
curves for different values gb are ordered from bottom to
top. The same behavior is observed in experimental systemsne” of the equilibrium states(Tg), and barrier height(T,) for
of different fragility. Indeed, the index of fragility defined in the p-spin spherical model as a function pf2.

PHYSICAL REVIEW E69, 061505(2004)

T 7
- p=2.2 /,/.,/,'1
p— 4 4 i
096+ |~ p—30 o v ’[_:
- p:lo /// .,,/ ’%
E ool |~ PEH0 A
= 092 | p=95 ! i
,§ P -~ _/', ! |I_
= Pl S i
- . i
_
7 a ! !
-7 - [
0.84 ’ - I
hadl e I
il

0. | 1 | 1
b9 0.92 0.94 0.96 0.98 1

T
g/1“

FIG. 3. The complexity%(Ty)/ 2 (T) as a function ofTy/T for
the p-spin spherical model at different values mfFragility is the
slope of the curves iy/T=1. The system becomes stronger on
increasingp.

Eqg. (10) is exactly 1 plus the slope of the curvesTg/T

=1 (see Fig. 3
3 (Ty)
m(T,)=1+T,
9 9 E(Tg)
d=(Tg)/ 2 (T)]
=1 16
AT e 1o

We see that it is a decreasing functionmfits values are in

the range observed for the experimental system due to our
(arbitrary) choice of the constart appearing in Eq(9), C
=0.1. In Fig. 4,X(T,) is also reported as a function pf We

see that it is an increasing function pf which diverges as
Inp for p—<o: thus, the number of states in this system is a
decreasing function of the fragility, at variance with what is

10° -
10 E

10° 3

T

10°

700

p-2

FIG. 4. Fragility m(Ty), configurational entropyz(Tg), “vol-
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currently believedfor a review, see Refl1]). We will dis- 2 T T T T
cuss this point in detail in Sec. V. _T 7

;
C. Barrier heights and volume of the states T Tg 7

In Fig. 4 the barrier heigh€(T,) is also reported as a 5[ [~ T4 v
function of p, together with the indexa(Ty)=1-q(T,), R
which we called the “volume” of the equilibrium statesTgt T ¢ /o
We observe that in this model the states become smaller ol S
increasingp, while the barriers separating them increase. In 11 R -
Sec. V we will discuss this behavior, trying to deduce a geo-
metric description of the evolution of the phase space of this
model at differentp, and relate fragility to geometric prop-
erties of the phase space.

0.5 . Ll . Ll L L
0.1 1 10 100

IV. ISING p-SPIN MODEL . N .
FIG. 5. Thermodynamic transition temperat(ig glass transi-

The Isingp-spin model is another popular model for the tion temperaturd, and dynamical transition temperattfigfor the

study of the glass transitigi5,1§. Its Hamiltonian is given  p-spin Ising model as a function q@f-2.

by Eq.(14), where the variables; are Ising spinsg;=+1,

and the spherical constraint is absent. For the Igirgpin C. Vibrational properties and volume of the states

model, the two-replica potential(q, T) is given by Another relevant difference between the spherical and
Ising models is that, in the latter, harmonic vibrations are not

f Dz cosi{Az)In cosiAz) present(the variables being discreteve haveq(T)— 1 ex-
ponentially forT~0, and the definition ofr via Eq. (11)

gives =0 for all p. However, the definition given in Eq.
JDZ cost{A2) (13) and used in our calculations gives a reasonable result
17 also in absence of harmonic vibrations.

-1
V(g,T) = Bqup +B 5 gt -

V. CORRELATIONS BETWEEN DIFFERENT PROPERTIES

- —2 2— 2 P-1
whereDz=exp-z°/2) dz and A“=B“pgP/2. OF THE PHASE SPACE

The Ising p-spin model is also a “Gaussian-like” model,
like the spherical one. However, the total number of states in In this section we will examine the correlations in the
the Ising p-spin model cannot be greater thah @he total  quantities under study, trying to relate fragility to the phase
number of configurations and hence(T)<In 2, while in  space geometry. We will compare our results with the gen-

the spherical model(T,) diverges as Ip for p—, as pre- eral considerations that we made in REf] and with the
viously discussed. experimental results of Ref6].

A. Fragility and volume of the states

In Ref. [6] it has been established that fragility is posi-
The first consequence of this difference is observed whefively correlated with the index defined in Sec. II. In other

studying the transition temperatures as a functiom ¢éee

Fig. 5. Indeed, as in the spherical model, we haye- T, 10 F=r———

for p~2 andTy> Ty for p—cc. But in this model,Ty tends - -~
to a finite value at large, while Ty and Ty diverge. This 10'F el
behavior can be understood recalling that for a “Gaussian- | -

like” model we haveT,~1/y3", 3" being the total number 10"

_________
~.
~.

of states—i.e., the maximum &f(T) [1]. § - T

1 T~ -

10 Dy

A. Temperatures

ST

B. Complexity and geometric properties of the phase space 102k

The “Angell plot” for the complexity of the Ising-spin i
model looks very similar to the one of the spherical model 107
(see Fig. 3 and is not reported here. AF

Having fixed an appropriate value for the consténin 10 ¢
Eqg. (9) (C=0.02, different from the value chosen in the pre- A T o
vious casg the behavior of the fragility as a function pfis 10 1 10 100
also very similar to the one of the spherical model. The same p-2
behavior is found for the other quantities under study, as one FIG. 6. Fragility m(T,), configurational entropy(T), “vol-
can deduce from a comparison of Fig. 6 and 4, the mairume” of the equilibrium states(T) and barrier height(T,) for
difference being the discussed behavio2¢T,) at largep. the p-spin Ising model as a function @f-2.

ool ml 1l
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50 e ' T ' ' 10" E . —
— Spherical , 7 T~ — Spherical
40 |-- Ising , /- 1' —- Ising
107 F
N > [
10°F
10°F 3
3
) | ) | ) | ) | ) | ) 107 o . L
% 0.1 0.2 0.3 0.4 0.5 0.6 10 100

m

¢ FIG. 8. Total number of statésepresented by the complexity at

FIG. 7. Fragility versusy for the two investigated models. The 1 ) 4q 3 function of the fragilityn: an inverse correlation is found

R o . . . g
curve is very similar for the two models and is consistent with thepeqyeen these quantities, at variance with what is naively expected
linear correlation found i1j6] at least fora<0.4. from the Adam-Gibbs relation.

words, fragile systems have large basins while strong sySjis T=T_value. The parameté is inversely proportional to
tems have small basing Fig. 7 we plot the fragiliymas a e fraSiIity m: therefore,m~ 3 /€. Thus, fragility is not
function of a parametrically inp for the investigated sys-  gimply correlated to the total number of states: if the “barrier
tems. The curven(c) is very similar for the two models —  heights” grow faster than the total number of states, fragility
remember that the only adjustable parameter is the constaph, pe a decreasing function Bf We will now show that

C in Eq. (9). By comparison with Fig. 3 of Refl6], we s is indeed the case in the considered models.
conclude that the model has a behavior similar to the one of

real systems. Surprisingly, also the linear correlation between

m and « is reproduced forr=<0.4. Thus, mean-fielg-spin

models are able to describe the relation between fragility and From Figs. 4 and 6 we see that the barrier height is indeed

the volume of the basins visited aroumigifound in Ref.[6].  an increasing function gb in the considered models. Using
Eqg. (9), Eq. (18) can be written as

C. Barrier heights, total number of states, and fragility

B. Fragility and total number of states

T
-4
It is usually believed that fragile systems have a larger D‘CTK' (19)

number of states than strong ones, even if the total number of _ o
states is not an experimentally accessible quantity and nuFherefore, from Figs. 2 and 5 we see tliatis indeed an
merical simulations give contradictory resyi1]. However,  increasing function op that diverge forpp—, as the ratio

in the model considered here the behavior is exactly the opTy/ Tk increase on increasing for both models. Thus, we
posite. In Fig. 8 we reporL(Ty) as a function of the fragil- can conclude that in the considered models the height of the
ity: we see that the total number of states is a decreasingarriers(in units of Ty) increases faster than the total number
function of the fragility, at variance with what is currently Of states. This explains why one observe an inverse correla-
believed. To discuss this point, we have to refe[’]tp there, tion between fraglllty and the total number of states, as dis-
we discussed the possibility of correlating fragility with the cussed above and in R¢t].

total number of states for general model¢T) and assum-

ing the validity of the Adam-Gibbs relation, E(L). We con- D. Geometric picture of the phase space

cluded that knowledge of the distribution of states is not

enough to determine the fragility. Indeed, the relevant param- Collecting all the information that we obtained in the pre-

eter was identified, for a general “Gaussian-like” distributionV'Ol.JS.SeCt'an’ we can propose a geometric picture of the
of states, as variation with p of the p-spin-model free-energy landscape.

Indeed, on increasing, (i) the total number of states in-
E(Ty) creasesiii) the volume of the states decreaseslecreases
= ﬁ (18) and (iii) the height of the barriers between states increases.
¢ Thus, we get the picture of a landscape where, on increas-
Note that in Eq(18) we have to calculat€ at T=Ty because ing p, a great number of small states with very high curva-
in the considered models the barrier height is a  tures and separated by very high barriers appear: a sketch of
T-dependent quantity, while in the Adam-Gibbs relation it isthis evolution is given in Fig. 9. The behavior of the fragility
usually assumed to be a constfsee Eq(1)]. However, the in this situation is related to the behavior Bf £, the ratio
Adam-Gibbs relation has been tested aroligdherefore, to  between number of states and height of the barriers between
a good approximation, we can féto be a constant equal to them: in these models, it turns out titaincreases faster than

061505-7



PARISI, RUOCCO, AND ZAMPONI PHYSICAL REVIEW E59, 061505(2004)

V.F small p (fragle) existing data are not sufficient to strictly test this prediction;

excess entropy is available only for a few experimental sys-
tems, and numerical simulations are performed in a tempera-
ture range where the fragility of the investigated systems is
approximately the same. We hope that these predictions can
large p (strong) be tested in the future.
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APPENDIX: THE TWO-REPLICA POTENTIAL

FIG. 9. Sketch of the evolution of thp-spin free energy by The two-replica potential is defined in R¢€] as
varying p: at smallp there is a small number of states of large

~BH(0)
volume separated by low barriers; at highhere is a large number V(g)=-F(T) - I f da-e In Z(,q)
of states of small volume separated by high barriers. The height of N Z(B) Y
the barriers increases faster than the number of states: thus, fragility (A1)

is a decreasing function gf.
Z(o,q) = J dre 7 8(q - d(o, 1),
3, and the fragility is a decreasing function pf ) o )

This behavior is consistent with the fact that fragility WhereF(T) is the equilibrium free energy amgio, 7) is the
turns out to be positively correlated with the “volume” of the overlap function. The following expression is then derived
states as measured by Indeed, if, on the contrary, the bar- [18]:
rier height grew slower than the total number of states T 9 n
(equivalently, ifm were positively correlated with the total  V(q) =-F(T) - lim lim ——< J da'e_BH(U)Z(O',q)m_]') )
number of statesthere should be also an inverse correlation n—om-1NNnJm
betweenm and «, in disagreement with what is experimen- (A2)
tally observed.

In thep— 2 limit, where the fragility becomes infinite, the
second derivative with respect tpof the potentialV(q,T) n

<fd0'e_'3H(")Z(0',q)m_1>

The last integral can be rewritten as

calculated inq=0 andT=Tx=Ty vanishes(see Fig. 1 and
the so-called spin glass susceptibility diverges at the critical

temperature. In other words, when the fragility becomes in- nom
finite soft modes appear at the critical temperature, support- = f dffaae_ﬁ% Hoad [T TT 8(0 - a0, o).
ing the previously presented physical picture. =1 a=2
Note that the outlined picture is valid for “Gaussian-like” (A3)

models—i.e., models where the complexity is a concave _ _ -
function of the temperature that vanishesTatwithout any V\(herefa—hl,--- N, a=1, I M. Jh's |_?be_xactly the exI?res-
inflection point. These models seem to describe correctly th?lon ot :] ehnm(tjl(rjngs-relp icated equil rlul;n ?%t't'on unc-
distribution of basins in real systems only for relatively high lon, wit tde % ftiona Ico_nstram given Dy tl&unctions.
fragilities. The behavior of the complexitgor configura- Using standard manipulatio2], it is rewritten as

tional entropy, or excess entropgs a function of tempera-

ture for very strong systems is still an open problem; our f
discussion may not apply to these systems.

n m
ana',b,B eNf(Q)H H 5(q - Qal,aa)u

a=1 a=2

(Ad)

B 1
VI. CONCLUSIONS Q=7 > Qepp+ 5l detQ.
aa,bp

From the investigation of two mean-fiefgspin models, . . .
we proposed a picture for the evolution of the free—energyThus’ evaluating the integral at the saddle point, we get
landscape from fragile liquids to strong ones. This picture T —
accounts for the recently observed correlation between fra- V() ==F(T) = lim lim ——f(Q). (AS5)
gility of a liquid and vibrational properties of the correspond- i
ing glass. The main prediction of our analysis is that the totallhe matrixQ is defined by the following conditions:
number of states and the Adam-Gibbs paramétehould (i) The elements on the diagonal are equal to 1.
both be decreasing functions of the fragility. Unfortunately, (i) The element€,:.,, «>1, are equal t@.
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(iii) All the other elements are determined by maximiza- BP prP T r—o?

tion of f(Q). V(Q):—7+T—§ In(1-r)+ = |’ (A7)
As usual, one needs a parametrization of the ma&jrin _ _ o

order to perform the analytic continuation to noninteger Wherer(q) is determined by, V=0. Now, it is easy to check

andm. A possible ansatz ig9] (in the examplen=3, m=4):  that the conditiondV/dq=d,V=0, together withg, V=0, is
satisfied ifq=r. Thus, whenV(q) is stationary,r(q)=q and

the potentiaV(q) reduces to the one given by Ed5).
The fact that wherV/dg=0 the matrixQ reduces to the
0 0 usual 1RSB overlap matriget us call it Q) is general: in-
deed, the conditionVV/dq from Eg. (A5) is equivalent to

rr 1 df(Q)_
q dQ

0 _ This means that the functiof(Q) must be stationary with
respect to all elements @ if dvV/dg=0, and we know that
rro1 the 1RSB matrixQ provides a solution to this condition. As
a final remark, we note that =0, we have

f(Q

— == m,q), A9

am Be1rsdM, ) (A9)

o 0 o -
== B
= = O

- o

0. (A8)

Ol
1
o
o O o
=

o o0 a r
= P
= = o

-

rril where¢irsgis the usual 1RSB free energy. Substituting this
expression in Eq¢A5), one obtains

Within this ansatz and using the relation V(@)=—F(T) + lim d(Me1rsd M, Q)
m—1

q = rITEmlam(PlRSE(m- Q), (A10)

r | (1-n™A1=2r+rm-(m-1)¢7], using the relationp;rgdm=1)=F(T) which holds abovdy.
Therefore,on its stationary pointsV(q) is given (at the
1RSB leve) by this simple expression, which can be easily

(A6) calculated in several models. Note that, as discussed in Ref.
[14], full RSB effects can be important for the computation

one gets of V(g). However, we do not account for them in this paper.

de

o 0 o -
= B
— = 0o

-
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