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We investigate the relation between fragility and phase space properties — such as the distribution of states
— in the mean-fieldp-spin model, a solvable model that has been frequently used in studies of the glass
transition. By direct computation of all the relevant quantities, we find that(i) the recently observed correlation
between fragility and vibrational properties at low temperature is present in this model and(ii ) the total number
of states is a decreasing function of fragility, at variance with what is currently believed. We explain these
findings by taking into account the contribution to fragility coming from the transition paths between different
states. Finally, we propose a geometric picture of the phase space that explains the correlation between
properties of the transition paths, distribution of states, and their vibrational properties. However, our analysis
may not apply to strong systems where inflection points in the configurational entropy as a function of the
temperature are found.
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I. INTRODUCTION

The glass-forming materials are characterized by a huge
variation of their transport(viscosity, mobility, diffusivity)
and dynamical(relaxation times) properties, upon supercool-
ing. As an example, the viscosity in the whole ”liquid” range,
if crystallization is avoided, increases of about 17 orders of
magnitude by decreasing the temperature before the system
falls in the glassy state. The transition to the latter is conven-
tionally fixed at the temperatureTg where the viscosity
reaches a value of 1013 P. Different systems show different
temperature behavior of the viscosity, and they have been
classified accordingly. Fragility is an index measuring the
steepness of the viscosity as a function of the temperature on
approaching the glassy state: “fragile” systems(high value of
the fragility index) are characterized by a super-Arrhenius
behavior of the viscosity, which increases very fast and—if
extrapolated belowTg—seems to diverge at a finite tempera-
ture TK. In “strong” systems(low value of the fragility in-
dex), on the contrary, the viscosity increase is less dramatic
and follows an Arrhenius law, apparently diverging only at
zero temperature.

The identification of the microscopic details that, in a
given glass former, determine the temperature dependence of
the viscosity, and thus the value of the fragility, is a long-
standing issue in the physics of supercooled liquids and the
glassy state. Large numerical and theoretical efforts have
been devoted to the attempt to relate the fragility to specific
interparticle interactions(e.g., strong glasses are often char-
acterized by highly directional covalent bonds, while the
fragile ones have more or less isotropic interactions). More
recently, the attention has been focused on the possible rela-
tion existing between the fragility and features of the poten-
tial energy landscape(PEL), more specifically the energy
distribution of the minima of the PEL and the properties of

the basin of attractions of such minima. With this respect, a
key point is the existence of a relation between viscosity(or
relaxation times) and the configurational entropySsTd (i.e.,
the number of basins populated at a given temperature):
namely, the Adam-Gibbs relation

hsTd = h` expS E
T S sTd

D . s1d

HerehsTd is the viscosity andh` its high-temperature limit.
This relation has been extensively tested against experimen-
tal results, and it is now commonly accepted as “correct”.
Despite its success in describing both numerical and experi-
mental data, the Adam-Gibbs relation still has not been de-
rived in a clear way from microscopic models. This leaves
unsolved the question of the microscopic interpretation of
the parameterE, which is usually believed to be related to the
properties of the transition paths between different minima of
the potential energy, such as the height of the barriers or the
connectivity of the minima. By using the Adam-Gibbs rela-
tion, one could expect to relate fragility to the properties of
SsTd —i.e., to the distribution of basins in the phase space of
the system. However, this possibility is frustrated by the lack
of knowledge of the parameterE. Indeed, once a model for
SsTd has been chosen, one can obtain the whole range of
experimentally observed fragilities by varyingE (see Ref.[1]
and references therein). More specifically, in Ref.[1] it was
observed that for a large class of models forSsTd — where
SsTd is a concave function ofT that vanishes at a given
temperatureTK and assumes its maximumS* at high tem-
perature(“Gaussian-like models”) — the relevant parameter
that actually determines the fragility is

D =
E

TKS* . s2d

Thus, fragility appears to be determined by the ratio between
E (measured in units ofkBTK) and the total number of states*Electronic address: francesco.zamponi@phys.uniromal.it
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S* /kB; it is related to both the distribution of minima
(throughS*) and the characteristic of the transition path be-
tween them(throughE). The relation between fragility and
phase space properties can be even more complicated in
those cases where the functionSsTd does not belong to the
Gaussian class.

The relevance of the concept of fragility also relies on the
correlations that have been found between this index and
other properties of glass-forming liquids. Examples of these
correlations are the specific heat jump atTg (thermodynamic
fragility) [2], the degree of stretching in the nonexponential
decay of the correlation functions in the liquid close toTg

[3], the visibility of the boson peak at the glass transition
temperature[4], or the temperature behavior of the shear
elastic modulus in the supercooled liquid state[5]. More re-
cently a striking correlation between fragility and the vibra-
tional properties of the glass at low temperatures has been
found [6]. Specifically, by examining the dynamic structure
factors of different glass formers well belowTg, it has been
found that the fragility of the corresponding liquid is propor-
tional to the rate of change of the nonergodicity factor in the
T→0 limit. The latter quantity being fully determined by the
(harmonic) vibrational properties(eigenmodes of the disor-
dered structure), this finding implies the existence of a deep
relation between three features of the PEL: the energy of the
minima, the transition paths between them(that together de-
termine the fragility), and the Hessian matrix, evaluated at
the minima themselves, which fixes the vibrational proper-
ties.

With the aim to elucidate the existence of this unexpected
correlation between energy, curvature, and transition paths in
the minima of the PEL we selected a solvable model of
“glass,” where(i) the distribution of minima is “Gaussian
like,” (ii ) the vibrational properties of the minima can be
determined, and(iii ) the transition path between different
minima can be evaluated and characterized by an energy
parameter. More specifically, we investigate the mean-field
p-spin model(in both its spherical and Ising spin versions), a
model that shares with the structural glasses many aspects of
the glass transition phenomenology and that is known to
have a Gaussian-like distribution of states. Our goal is two-
fold: (i) we aim to verify if the analysis reported in[1] is
indeed correct in some microscopic model — i.e., if one can
obtain a wide range of fragilities in a Gaussian-like model by
varying the parameter«—and (ii ) to check whether one can
explain the correlation between fragility of the liquid and the
vibrational properties of its glass found in[6] by studying the
geometry of the phase space. The latter point could allow us
to shed light on the origin of the correlation between number
of minima, their vibrational properties, and the property of
the transition path between them.

The paper is organized as follows: in Sec. II we define the
relevant quantities in the case of the mean-fieldp-spin
model; in Sec. III we compute them for the sphericalp-spin
model and in Sec. IV for the Isingp-spin model; in Sec. V
we discuss the relation between fragility and phase space
geometry in these models and compare our result with ex-
perimental data. Finally, we draw the conclusions.

II. DEFINITION OF THE RELEVANT OBSERVABLES

The quantities we wish to compute are

TK thermodynamical transition temperature;

Tg glass transition temperature;

Td dynamical transition temperature;

SsTgd complexity atTg;

msTgd fragility;

asTgd “volume” of the equilibrium states atTg;

EsTgd “barrier height” atTg;

SettingkB=1, all the above quantities are either dimension-
less or have the dimension of an energy; in thep-spin
model—as usual in classical spin models—a natural energy
scale J appears as the strenght of the couplings between
spins. Thus, if we additionally setJ=1, all the quantities we
will deal with in this paper become dimensionless; in the
following, with this specification, we will always deal with
dimensionless quantities.

We have now to identify the proper definition of these
quantities in a mean-field model. The main problem is that in
a mean-field model the glass transition temperatureTg is not
a well-defined quantity. Indeed, the relaxation time of the
system is known to diverge — as a power law — when the
temperature approaches the dynamical transition temperature
Td, which corresponds to the usual mode-coupling tempera-
ture TMCT. The crossover from a power-law behavior of the
relaxation time to an Arrhenius-like behavior, observed
aroundTMCT in finite-dimensional systems, is due to the ac-
tivated processes becoming relevant; these processes are ab-
sent in mean-field systems, and the crossover atTMCT be-
comes a true dynamical transition atTd [7]. To overcome this
problem, we will give an estimate of the heightEsTd of the
barrier that the system must pass through in order to escape
from a metastable state at a given temperatureT. Thus, we
will make use of a “fictitious” Adam-Gibbs relation

hsTd = h` expS EsTd
T S sTd

D s3d

and defineTg by hsTgd /h`=const or, equivalently, by

EsTgd
Tg S sTgd

= const. s4d

Note that in this paper we will not distinguish between the
“complexity” (or “configurational entropy”) SsTd, which can
be calculated in mean-field models, and the “excess entropy”
measured in the experiments: indeed, they behave in a simi-
lar way in a wide class of systems[8]. Obviously, the quan-
tity hsTd has no dynamical meaning in a mean-field context,
but it provides a useful definition ofTg that hopefully coin-
cides with the usual one in finite dimensions. It will turn out
that our analysis is not strictly dependent on this definition of
Tg, the behavior of the various quantities atTg being repre-
sentative, as we will see, of a general trend observed at all
temperaturesT E fTK ,Tdg by varyingp.
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A. Two-replica potential

The easiest way to provide a definition of all the above
quantities is to consider the two-replica potential approach
introduced and discussed in[9,10]. This functionVsq,Td can
be interpreted as the free-energy cost paid to keep two copies
of the system at a fixed overlapq:

Vsq,Td = FqsTd − F0sTd; s5d

here FqsTd is the free energy of two copies of the system
when constrained to have fixed overlapq, and F0sTd
=2FsTd is the free energy of two independent copies of the
system.

Its qualitative behavior is shown in Fig. 1 for the one step
replica symmetry breaking(1RSB) mean-fieldp-spin spheri-
cal model: forT.Td it is a convex function ofq with only
one minimum atq=0. At the dynamical transition tempera-
tureTd a secondary minimum starts to develop at finiteq. On
lowering the temperature belowTd, the value ofV at the
minimum decreases and vanishes at the thermodynamical
transition temperatureTK.

From the potentialVsq,Td one can extract information
about the complexitySsTd and the barrier heightEsTd. In-
deed, it is well known that forTK,T,Td the phase space of
1RSB models is disconnected in an exponentially high num-
ber of metastable states. The Gibbs equilibrium state is a
superposition of a subset of these states(“equilibrium
states”) having a defined self-overlapqsTd; however, the
probability of finding — at equilibrium — two independent
copies of the system in the same state is zero[11]. Different
states have zero overlap; we therefore expect that the stable
phase of the two copies of the system — i.e., the one for
which Vsqd is minimum — is atq=0. This is indeed the case
as one can see from Fig. 1. The secondary minimum atq
Þ0 can then be interpreted as a metastable state for the two
coupled systems, which corresponds to the situation where
both systems are in the same state with self-overlapqsTd.
Thus, the valueqminsTd whereVsq,Td has a secondary mini-
mum can be interpreted as the self-overlap of the equilibrium
states at temperatureT.

The free energy of the system forTK,T,Td can be writ-
ten as

FsTd = fsTd − T S sTd, s6d

where fsTd is the free energy of a single equilibrium state at
temperatureT and SsTd is the complexity—i.e., the loga-
rithm of the number of equilibrium states. The free energy of
two independent copies of the system isF0sTd=2FsTd
=2fsTd−2TS sTd, while the free energy of two copies con-
strained to be in the same equilibrium state is given by

Fqmin
sTd = 2fsTd − T S sTd. s7d

Thus,

Vsqmin,Td = Fqmin
sTd − F0sTd = T S sTd, s8d

and the equilibrium complexitySsTd can be deduced from
the functionVsq,Td.

The difference between the value ofV at the maximum
and the value ofV at the minimum can be interpreted as the
height of a “barrier” that the two coupled systems have to
overcome to escape from the situation where they are con-
strained to be in the same state. Thus, we can define the
“barrier height” EsTd=Vsqmax,Td−Vsqmin,Td. Note that a
system-dependent proportionality factor is needed in order to
account for the cooperativity of the process of escaping from
a state: indeed,Vsqd is the free energy per spin, while an
unknown number of spins can be involved in the escaping
process. Therefore, theEsTd defined above is an estimate of
the barrier height up to an unknown(system-dependent) pro-
portionality factor.

B. Temperatures

The thermodynamical transition temperatureTK is defined
as the temperature where the complexity vanishes:SsTKd
=0. Then, atTK the value ofV at the secondary minimum
becomes equal to zero(see Fig. 1). The dynamical transition
temperatureTd is the temperature at which the metastable
minimum first appears. We now provide a definition of the
“glass transition temperature”Tg. As we discussed at the
beginning of this section, using the Adam-Gibbs relation, the
usual definition of glass transition temperature turns out to be

EsTgd
Tg S sTgd

= C. s9d

The value of the constantC is arbitrary. Taking into account
the fact that in the considered modelsE is defined up to a
proportionality factor, we can fix the value of the constant in
order to obtain reasonable(with respect to experiments) val-
ues for the different quantities we want to study, fragility in
particular. Different choices of the constant change only
quantitatively the results, while the qualitative picture stays
the same.

C. Complexity, barrier heights, and fragility

Given a definition ofTg, the complexity atTg is simply
SsTgd and the barrier heightEsTgd: clearly, these two quan-

FIG. 1. The two-replica potential forTP fTK ,Tdg in the spheri-
cal p-spin model.
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tities are related by Eq.(9). Knowing the complexity as a
function of the temperature, we can define the fragility as

msTgd = 1 +Tg
S8sTgd
SsTgd

. s10d

The latter definition is very useful in a mean-field context as
— once a definition ofTg has been chosen — it involves
only the complexity, which is a well-defined quantity in
mean-field models. It is equivalent to the usual Angell defi-
nition of fragility if h`=const, and the Adam-Gibbs relation
is assumed to be valid[1]. This definition of fragility has
been shown to be related to the one usually considered in
experiments in Ref.[2].

D. Volume of the states

As we discussed in the Introduction, in Ref.[6] fragility
has been shown to be correlated with an index related to the
volume of the states populated at equilibrium aroundTg.
More precisely, in[6] this index has been defined as

asTgd = lim
k→0
UdffksTdg−1

dsT/Tgd
U

T=0
, s11d

where fksTd is the nonergodicity factor extracted from the
dynamic structure factorSsk,vd at a given wave vectork.
From Fig. 2 of Ref.[6], we see that the possibility of classi-
fying the considered systems in term ofa — given by Eq.
(11) — relies on the observation that the curves offk as a
function of T/Tg for different systems do not intersect[the
same observation, which holds for lnhsTd as a function of
Tg/T, is the basis of the definition of fragility]. Therefore, the
indexa defined in[6] can be replaced by other equivalent —
by equivalent we mean positively correlated — definitions
(like the definition of F1/2 as a “fragility index” [2]). An
useful equivalent definition ofa is

asTgd = lim
k→0

f1 − fksTgdg. s12d

As one can easily check observing Fig. 2 of Ref.[6], this
definition is equivalent to Eq.(11) if the curvesfksTd do not
intersect.

The quantityfksTd (in the low-k limit ) can be identified in
the considered models with the self-overlap of the states: this
identification comes from the observation that both quantities
represent theplateauof a relevant correlation function. Thus,
we will define

asTgd = 1 −qsTgd, s13d

whereqsTgd is the self-overlap of the equilibrium states atTg

— i.e., the value ofq whereVsq,Td has the secondary mini-
mum atT=Tg (see Fig. 1).

As the self-overlap of the states is related to their volume
in phase space(high overlap corresponding to small states), a
small value ofa corresponds to small-volume states, while a
big value of a corresponds to large-volume states. In this
sense,asTgd will be called “volume of the equilibrium states
at Tg.” Note that a similar identification has been discussed
in Ref. [6]: indeed, from Eq.(7) of Ref. [6] (note that due to
a typographical error the power –1 has to be disregarded) one
can see thata is related to the curvatures of the minima of
the potential(in the harmonic approximation) and that small
curvatures(large volume) correspond to largea, while high
curvatures(small volume) correspond to smalla. This is
consistent with the equivalence of the definition ofa given
in Ref. [6] and the one adopted here.

E. Summary of the definitions

To conclude this section, we give a short summary of all
the definitions we discussed. We will callqminsTd the value of
q whereVsq,Td has the secondary minimum andqmaxsTd the
value ofq whereVsq,Td has a maximum. Then, we define

SsTd = V„qminsTd,T…/T,

EsTd = V„qmaxsTd,T… − V„qminsTd,T…,

TK : S sTKd = 0,

Tg :
«sTgd

Tg S sTgd
= C,

Td : qmaxsTdd = qminsTdd,

msTgd = 1 +Tg
S8sTgd
SsTgd

,

asTgd = 1 −qminsTgd.

The constantC will be chosen in order for the fragility to be
in the experimentally observed range.

FIG. 2. Thermodynamic transition temperatureTK, glass transi-
tion temperatureTg and dynamical transition temperatureTd for the
p-spin spherical model as a function ofp−2.
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III. SPHERICAL p-SPIN MODEL

In this section, we will compute explicitly all the previ-
ously defined quantities in the sphericalp-spin model. The
model is defined by the Hamiltonian

Hp = − o
si1,¯,ipd

Ji1,¯,ip
si1

¯ sip
, s14d

wheresi are real variables subject to a spherical constraint
Sisi

2=N, and Ji1,¯,ip
are quenched random Gaussian vari-

ables with zero mean and variancep! / s2Np−1d. This simple
model has been successfully used for studies of the glass
transition[7,12]. It is a “Gaussian-like” model, in the sense
that its complexity — even if the distribution of states in not
exactly Gaussian — is known to be a concave function of the
temperature, which vanishes atTK and assumes its maximum
at Td, without any inflection point in between[13].

The expression forVsq,Td in the p-spin spherical model
has been computed in Refs.[9,14]. However, a simplified
expression can be used when the value ofVsq,Td on its
stationary pointsis considered(see the Appendix):

Vsq,Td = −
b

4
qp −

T

2
lns1 − qd −

Tq

2
. s15d

This function can be shown to coincide with the correct
Vsq,Td on each stationary point ofVsq,Td. As we are inter-
ested only in the value ofVsq,Td on its stationary points, the
use of the correctVsq,Td calculated in Refs.[9,14] or of the
one given by Eq.(15) will give exactly the same result.

Note that, while the model is defined only for integerp,
Eq. (15) holds also for realp; we will therefore discuss the
behavior of the different quantities for any realpù2. In
particular, thep→2 limit is interesting being related to a
diverging fragility sTd→TKd and to the discontinuous 1RSB
transition becoming a continuous one.

A. Temperatures

From Eq.(15) we can compute the three temperaturesTK,
Tg, and Td as functions ofp. Their behavior is reported in
Fig. 2. We immediately note that, forp,2, the difference
betweenTK andTg is very small therefore, the system is very
fragile. Moreover, forp→` the Kauzmann temperature ap-
proaches zero(as 1/Îln p), while the glass transition tem-
perature remains finite. The system therefore becomes stron-
ger and stronger on increasingp.

B. Complexity and fragility

The same observation can be made more quantitative by
considering an “Angell plot” for the complexity[2]: in Fig. 3
we show the complexitySsTd as a function of temperature
for different values ofp. The choice of the particular scaling
that appears in Fig. 3 has been made in order to make a close
correspondence with Fig. 2 of Ref.[2]. We see that the
curves for different values ofp are ordered from bottom to
top. The same behavior is observed in experimental systems
of different fragility. Indeed, the index of fragility defined in

Eq. (10) is exactly 1 plus the slope of the curves inTg/T
=1 (see Fig. 3):

msTgd=1 +Tg
S8sTgd
SsTgd

=1 +UdfSsTgd/ S sTdg
dfTg/Tg

U
T=Tg

. s16d

The fragility indexm is shown in Fig. 4 as a function ofp.
We see that it is a decreasing function ofp. Its values are in
the range observed for the experimental system due to our
(arbitrary) choice of the constantC appearing in Eq.(9), C
=0.1. In Fig. 4,SsTgd is also reported as a function ofp. We
see that it is an increasing function ofp, which diverges as
lnp for p→`: thus, the number of states in this system is a
decreasing function of the fragility, at variance with what is

FIG. 3. The complexitySsTgd / S sTd as a function ofTg/T for
the p-spin spherical model at different values ofp. Fragility is the
slope of the curves inTg/T=1. The system becomes stronger on
increasingp.

FIG. 4. Fragility msTgd, configurational entropySsTgd, “vol-
ume” of the equilibrium statesasTgd, and barrier height«sTgd for
the p-spin spherical model as a function ofp−2.
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currently believed(for a review, see Ref.[1]). We will dis-
cuss this point in detail in Sec. V.

C. Barrier heights and volume of the states

In Fig. 4 the barrier heightEsTgd is also reported as a
function of p, together with the indexasTgd=1−qsTgd,
which we called the “volume” of the equilibrium states atTg.
We observe that in this model the states become smaller on
increasingp, while the barriers separating them increase. In
Sec. V we will discuss this behavior, trying to deduce a geo-
metric description of the evolution of the phase space of this
model at differentp, and relate fragility to geometric prop-
erties of the phase space.

IV. ISING p-SPIN MODEL

The Isingp-spin model is another popular model for the
study of the glass transition[15,16]. Its Hamiltonian is given
by Eq. (14), where the variablessi are Ising spins,si = ±1,
and the spherical constraint is absent. For the Isingp-spin
model, the two-replica potentialVsq,Td is given by

Vsq,Td = b
p − 1

4
qp + b

p

4
qp−1 −

EDz coshsLzdln coshsLzd

EDz coshsLzd
,

s17d

whereDz=exps−z2/2d dz andL2=b2pqp−1/2.
The Isingp-spin model is also a “Gaussian-like” model,

like the spherical one. However, the total number of states in
the Isingp-spin model cannot be greater than 2N (the total
number of configurations), and henceSsTdø ln 2, while in
the spherical modelSsTgd diverges as lnp for p→`, as pre-
viously discussed.

A. Temperatures

The first consequence of this difference is observed when
studying the transition temperatures as a function ofp (see
Fig. 5). Indeed, as in the spherical model, we haveTK,Tg
for p,2 andTg@TK for p→`. But in this model,TK tends
to a finite value at largep, while Tg and Td diverge. This
behavior can be understood recalling that for a “Gaussian-
like” model we haveTK,1/ÎS* , S* being the total number
of states—i.e., the maximum ofSsTd [1].

B. Complexity and geometric properties of the phase space

The “Angell plot” for the complexity of the Isingp-spin
model looks very similar to the one of the spherical model
(see Fig. 3) and is not reported here.

Having fixed an appropriate value for the constantC in
Eq. (9) (C=0.02, different from the value chosen in the pre-
vious case), the behavior of the fragility as a function ofp is
also very similar to the one of the spherical model. The same
behavior is found for the other quantities under study, as one
can deduce from a comparison of Fig. 6 and 4, the main
difference being the discussed behavior ofSsTgd at largep.

C. Vibrational properties and volume of the states

Another relevant difference between the spherical and
Ising models is that, in the latter, harmonic vibrations are not
present(the variables being discrete): we haveqsTd→1 ex-
ponentially for T,0, and the definition ofa via Eq. (11)
gives a=0 for all p. However, the definition given in Eq.
(13) and used in our calculations gives a reasonable result
also in absence of harmonic vibrations.

V. CORRELATIONS BETWEEN DIFFERENT PROPERTIES
OF THE PHASE SPACE

In this section we will examine the correlations in the
quantities under study, trying to relate fragility to the phase
space geometry. We will compare our results with the gen-
eral considerations that we made in Ref.[1] and with the
experimental results of Ref.[6].

A. Fragility and volume of the states

In Ref. [6] it has been established that fragility is posi-
tively correlated with the indexa defined in Sec. II. In other

FIG. 5. Thermodynamic transition temperatureTK, glass transi-
tion temperatureTg, and dynamical transition temperatureTd for the
p-spin Ising model as a function ofp−2.

FIG. 6. Fragility msTgd, configurational entropySsTgd, “vol-
ume” of the equilibrium statesasTgd and barrier heightEsTgd for
the p-spin Ising model as a function ofp−2.
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words, fragile systems have large basins while strong sys-
tems have small basins.In Fig. 7 we plot the fragilitym as a
function of a parametrically inp for the investigated sys-
tems. The curvemsad is very similar for the two models —
remember that the only adjustable parameter is the constant
C in Eq. (9). By comparison with Fig. 3 of Ref.[6], we
conclude that the model has a behavior similar to the one of
real systems. Surprisingly, also the linear correlation between
m and a is reproduced foraø0.4. Thus, mean-fieldp-spin
models are able to describe the relation between fragility and
the volume of the basins visited aroundTg found in Ref.[6].

B. Fragility and total number of states

It is usually believed that fragile systems have a larger
number of states than strong ones, even if the total number of
states is not an experimentally accessible quantity and nu-
merical simulations give contradictory results[17]. However,
in the model considered here the behavior is exactly the op-
posite. In Fig. 8 we reportSsTgd as a function of the fragil-
ity: we see that the total number of states is a decreasing
function of the fragility, at variance with what is currently
believed. To discuss this point, we have to refer to[1]: there,
we discussed the possibility of correlating fragility with the
total number of states for general models ofSsTd and assum-
ing the validity of the Adam-Gibbs relation, Eq.(1). We con-
cluded that knowledge of the distribution of states is not
enough to determine the fragility. Indeed, the relevant param-
eter was identified, for a general “Gaussian-like” distribution
of states, as

D =
EsTgd

TK S sTgd
. s18d

Note that in Eq.(18) we have to calculateE at T=Tg because
in the considered models the barrier heightE is a
T-dependent quantity, while in the Adam-Gibbs relation it is
usually assumed to be a constant[see Eq.(1)]. However, the
Adam-Gibbs relation has been tested aroundTg; therefore, to
a good approximation, we can fixE to be a constant equal to

its T=Tg value. The parameterD is inversely proportional to
the fragility m: therefore,m, S /E. Thus, fragility is not
simply correlated to the total number of states: if the “barrier
heights” grow faster than the total number of states, fragility
can be a decreasing function ofS. We will now show that
this is indeed the case in the considered models.

C. Barrier heights, total number of states, and fragility

From Figs. 4 and 6 we see that the barrier height is indeed
an increasing function ofp in the considered models. Using
Eq. (9), Eq. (18) can be written as

D = C Tg

TK

. s19d

Therefore, from Figs. 2 and 5 we see thatD is indeed an
increasing function ofp that diverge forp→`, as the ratio
Tg/TK increase on increasingp for both models. Thus, we
can conclude that in the considered models the height of the
barriers(in units ofTK) increases faster than the total number
of states. This explains why one observe an inverse correla-
tion between fragility and the total number of states, as dis-
cussed above and in Ref.[1].

D. Geometric picture of the phase space

Collecting all the information that we obtained in the pre-
vious sections, we can propose a geometric picture of the
variation with p of the p-spin-model free-energy landscape.
Indeed, on increasingp, (i) the total number of states in-
creases,(ii ) the volume of the states decreases(a decreases),
and (iii ) the height of the barriers between states increases.

Thus, we get the picture of a landscape where, on increas-
ing p, a great number of small states with very high curva-
tures and separated by very high barriers appear: a sketch of
this evolution is given in Fig. 9. The behavior of the fragility
in this situation is related to the behavior ofS /E, the ratio
between number of states and height of the barriers between
them: in these models, it turns out thatE increases faster than

FIG. 7. Fragility versusa for the two investigated models. The
curve is very similar for the two models and is consistent with the
linear correlation found in[6] at least foraø0.4.

FIG. 8. Total number of states(represented by the complexity at
Tg) as a function of the fragilitym: an inverse correlation is found
between these quantities, at variance with what is naively expected
from the Adam-Gibbs relation.
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S, and the fragility is a decreasing function ofp.
This behavior is consistent with the fact that fragility

turns out to be positively correlated with the “volume” of the
states as measured bya. Indeed, if, on the contrary, the bar-
rier height grew slower than the total number of states
(equivalently, ifm were positively correlated with the total
number of states), there should be also an inverse correlation
betweenm anda, in disagreement with what is experimen-
tally observed.

In thep→2 limit, where the fragility becomes infinite, the
second derivative with respect toq of the potentialVsq,Td
calculated inq=0 andT=TK=Td vanishes(see Fig. 1) and
the so-called spin glass susceptibility diverges at the critical
temperature. In other words, when the fragility becomes in-
finite soft modes appear at the critical temperature, support-
ing the previously presented physical picture.

Note that the outlined picture is valid for “Gaussian-like”
models—i.e., models where the complexity is a concave
function of the temperature that vanishes atTK without any
inflection point. These models seem to describe correctly the
distribution of basins in real systems only for relatively high
fragilities. The behavior of the complexity(or configura-
tional entropy, or excess entropy) as a function of tempera-
ture for very strong systems is still an open problem; our
discussion may not apply to these systems.

VI. CONCLUSIONS

From the investigation of two mean-fieldp-spin models,
we proposed a picture for the evolution of the free-energy
landscape from fragile liquids to strong ones. This picture
accounts for the recently observed correlation between fra-
gility of a liquid and vibrational properties of the correspond-
ing glass. The main prediction of our analysis is that the total
number of states and the Adam-Gibbs parameterE should
both be decreasing functions of the fragility. Unfortunately,

existing data are not sufficient to strictly test this prediction;
excess entropy is available only for a few experimental sys-
tems, and numerical simulations are performed in a tempera-
ture range where the fragility of the investigated systems is
approximately the same. We hope that these predictions can
be tested in the future.
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APPENDIX: THE TWO-REPLICA POTENTIAL

The two-replica potential is defined in Ref.[9] as

Vsqd = − FsTd −
T

N
E ds

e−bHssd

Zsbd
ln Zss,qd,

sA1d

Zss,qd =E dte−bHstdd„q − qss,td…,

whereFsTd is the equilibrium free energy andqss ,td is the
overlap function. The following expression is then derived
[18]:

Vsqd = − FsTd − lim lim
n→0m→1

T

Nn

]

] m
SE dse−bHssdZss,qdm−1Dn

.

sA2d

The last integral can be rewritten as

SE dse−bHssdZss,qdm−1Dn

=E dsaae−bo
aa

Hssaadp
a=1

n

p
a=2

m

d„q − qssa1,saad…,

sA3d

where a=1,¯ ,n, a=1,¯ ,m. This is exactly the expres-
sion of thenm-times-replicated equilibrium partition func-
tion, with the additional constraint given by thed functions.
Using standard manipulations[12], it is rewritten as

E dQaa,bb eNfsQdp
a=1

n

p
a=2

m

dsq − Qa1,aad,

sA4d

fsQd =
b2

4 o
aa,bb

Qaa,bb
p +

1

2
ln detQ.

Thus, evaluating the integral at the saddle point, we get

Vsqd = − FsTd − lim lim
n→0m→1

T

n

]

] m
fsQd. sA5d

The matrixQ is defined by the following conditions:
(i) The elements on the diagonal are equal to 1.
(ii ) The elementsQa1aa, a.1, are equal toq.

FIG. 9. Sketch of the evolution of thep-spin free energy by
varying p: at small p there is a small number of states of large
volume separated by low barriers; at highp there is a large number
of states of small volume separated by high barriers. The height of
the barriers increases faster than the number of states: thus, fragility
is a decreasing function ofp.
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(iii ) All the other elements are determined by maximiza-
tion of fsQd.

As usual, one needs a parametrization of the matrixQ in
order to perform the analytic continuation to nonintegern
andm. A possible ansatz is[9] (in the example,n=3, m=4):

Q =11
1 q q q

q 1 r r

q r 1 r

q r r 1
2 0 0

0 1
1 q q q

q 1 r r

q r 1 r

q r r 1
2 0

0 0 1
1 q q q

q 1 r r

q r 1 r

q r r 1
22 .

Within this ansatz and using the relation

det1
1 q q q

q 1 r r

q r 1 r

q r r 1
2 = s1 − rdm−2f1 − 2r + rm − sm− 1dq2g,

sA6d

one gets

Vsqd = −
bqp

2
+

brp

4
−

T

2
Flns1 − rd +

r − q2

1 − r
G , sA7d

wherersqd is determined by]rV=0. Now, it is easy to check
that the conditiondV/dq=]qV=0, together with]rV=0, is
satisfied ifq=r. Thus, whenVsqd is stationary,rsqd=q and
the potentialVsqd reduces to the one given by Eq.(15).

The fact that whendV/dq=0 the matrixQ reduces to the
usual 1RSB overlap matrix(let us call itQ) is general: in-
deed, the conditiondV/dq from Eq. (A5) is equivalent to

dfsQd
dQ

= 0. sA8d

This means that the functionfsQd must be stationary with
respect to all elements ofQ if dV/dq=0, and we know that
the 1RSB matrixQ provides a solution to this condition. As
a final remark, we note that ifQ=Q, we have

fsQd
nm

= − bw1RSBsm,qd, sA9d

wherew1RSB is the usual 1RSB free energy. Substituting this
expression in Eq.(A5), one obtains

Vsqd=− FsTd + lim
m→1

]m„mw1RSBsm,qd…

= lim
m→1

]mw1RSBsm,qd, sA10d

using the relationw1RSBsm=1d=FsTd which holds aboveTK.
Therefore,on its stationary points, Vsqd is given (at the
1RSB level) by this simple expression, which can be easily
calculated in several models. Note that, as discussed in Ref.
[14], full RSB effects can be important for the computation
of Vsqd. However, we do not account for them in this paper.
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